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Geometric Graphs and Graph Signals

▶ Signals on geometric graphs appear in several application domains
⇒ Wireless communication networks, 3D point clouds, Climate data

▶ We develop a limit theory of signal processing (SP) on geometric graphs
⇒ Geometric graphs converge (or are sampled from) Manifolds
⇒ Convergence. Stability. Wireless Networks. Vector Fields

Manifold Convolutional Filters

▶ Manifold M ⊂ RN is d-dimensional with Laplace-Beltrami (LB) operator L
▶ A Manifold filter with coefficients h̃ is defined by the input-output relationship

g(x) =

∫ ∞

0
h̃(t)e−tL f (x)dt = h(L) f (x) .

▶ Discretizing a manifold filter yields a graph filter with shift operator e−TsLn

g =

Kt−1∑
k=0

h̃(kTs)e−kTsLn f ≈
Kt−1∑
k=0

h̃(kTs) (I − TsLn)
k f

▶ Recover standard convolutions if we make the particular choice L = d/dx

g(x) =

∫ ∞

0
h̃(t)e−td/dx f (x)dt =

∫ ∞

0
h̃(t) f (x − t)dt

▶ Manifold convolutions generalize standard (time) and graph convolutions

Spectral Representation of Manifold Convolutional Filters

▶ LB operator admits discrete spectral decomposition ⇒ Lf =
∞∑

i=1

λi⟨f ,ϕi⟩ϕi

▶ Manifold Fourier Transform of f is the set of projections ⇒ [f ]i = ⟨f ,ϕi⟩

▶ Frequency response of filter h is ⇒ ĥ(λ) =
∫ ∞

0
h̃(t)e−tλdt

Theorem (Manifold Filters in the Manifold Spectral Domain)

Manifold filters are pointwise in the spectral domain ⇒ [g]i = h(λi)[f ]i

▶ Manifold filters are easy to study in the manifold frequency (spectral) domain

Manifold Neural Networks (MNNs)

▶ A MNN is a cascade of L layers

▶ Each of the layers is composed of

⇒ Manifold convolutions h(L)

⇒ Pointwise nonlinearities σ

▶ Group learnable coefficients in H

▶ Write MNN as map y = Φ(H,L, f )

Layer 1

Layer 2

Layer 3

f (x)

y1(x) = h1(L)f (x) f1(x) = σ (y1(x))
y1(x)

y2(x) = h2(L)f1(x) f2(x) = σ (y2(x))
y2(x)

y2(x) = h2(L)f2(x) f3(x) = σ (y3(x))
y3(x)

f1(x)
f1(x)

f2(x)
f2(x)

f3(x) = ϕ(H,L, f )

Transferability of Geometric Graph Neural Networks

▶ Geometric graph filters and GNNs converge to their manifold counterparts
⇒ Enables transferability of geometric GNNs from small to large graphs

▶ Sample the manifold at {xi}n
i=1. Construct graph Laplacian of Gn with edges

wij = Kξ

(
∥xi − xj∥2

ξ

)
▶ Geometric graph filter is defined by replacing with graph Laplacians Ln

g =

∫ ∞

0
h̃(t)e−tLndtf = h(Ln)f, [f]i = f (xi)

▶ Geometric graph neural networks on Gn ⇒ Φ(H,Ln, f)

Lipschitz and Frequency Difference Threshold (FDT) Filters

▶ A filter is Ah-Lipschitz if its frequency response ĥ(λ) is Ah-Lipschitz

▶ Partition spectrum such that λi and λj are in different partitions if |λi − λj| ≥ α

▶ A filter is α-FDT if |ĥ(λi)− ĥ(λj)| ≤ δD for all λi , λj in the same partition

0 Λ1 Λ2 Λ3 Λ4 Λ5

h(λ)

▶ Does not discriminate frequency components associated to close eigenvalues

Convergence of Geometric GNNs to MNNs

Theorem (Convergence of Geometric GNNs)

If an L-layer MNN Φ(H,L, ·) on M and GNN Φ(H,Ln, ·) on Gn have normalized
Lipschitz nonlinearities, it holds in high probability that

∥∥∥Φ(H,Lϵ
n,Pnf )− PnΦ(H,L, f )

∥∥∥
L2(Gn)

≤ O
[(

N
α
+ Ah

)√
ξ

]
+ O

(
log(n)

n

)

with filters that are α-FDT with δD ≤ O(
√
ξ/α) and Ah-Lipschitz continuous.

▶ The properties of large GNNs can be analyzed via MNN as their limit
▶ The error bounds show trade-off between discriminability and approximation

Training through Transferability on Point Clouds
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Graph Filters GNN Lipschitz GNN
n = 300 21.15%± 3.48% 9.35%± 2.46% 7.63%± 3.36%
n = 500 18.09%± 6.28% 7.80%± 3.50% 7.54%± 4.01%
n = 700 17.31%± 6.59% 8.16%± 2.95% 7.97%± 2.45%
n = 900 15.58%± 4.54% 7.20%± 3.77% 6.68%± 3.94%

Z. Wang, L. Ruiz, and A. Ribeiro. ”Geometric Graph Filters and Neural Networks: Limit Properties and Discrim-

inability Trade-offs.” arXiv preprint arXiv:2305.18467 (2023).

Manifold Deformations as Operator Perturbations

▶ Stability to deformations is a distinguishable property of CNNs
▶ Stability of MNNs to deformations can be generalized to GNNs and CNNs

⇒ Consider manifold signal f and a deformation τ (x) over the manifold

p(x) = L′f (x) = Lg(x) = Lf (τ (x))

⇒ Translate manifold signal perturbations as LB operator perturbations

Theorem (Manifold deformations)

Let the deformation τ (x) : M → M satisfies dist(x , τ (x)) = ϵ and J(τ∗) = I + ∆

with ∥∆∥F = ϵ. If the gradient field is smooth, it holds that

L − L′ = EL +A,

where E and A satisfy ∥E∥ = O(ϵ) and ∥A∥op = O(ϵ).

Integral Lipschitz and Frequency Ratio Threshold (FRT) Filters

▶ A filter is Bh-Integral Lipschitz if its frequency response satisfies

|ĥ(a)− ĥ(b)| ≤ Bh|a − b|
(a + b)/2

, for all a,b ∈ (0,∞)

▶ Partition spectrum such that λi and λj are in different partitions if
∣∣∣λi
λj
− 1

∣∣∣ ≥ γ

▶ A filter is γ-FRT if |ĥ(λi)− ĥ(λj)| ≤ δR for all λi , λj in the same partition

0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

h(λ)

▶ Discriminate frequency components that are relatively far from each other

Stability of Manifold Neural Networks

Theorem (Stability of MNNs to deformations)

An L-layer MNN Φ(H,L, f ) have normalized Lipschitz continuous nonlinearities.
Let L′ be the deformed LB operator with max{α, 2, |γ/1 − γ|} ≫ ϵ, then

∥∥∥Φ(H,L, f )−Φ(H,L′, f )
∥∥∥

L2(M)
≤ O

[(
N
α
+ Ah +

M
γ

+ Bh

)
ϵ

]
∥f∥L2(M)

if the manifold filters are α-FDT with δD ≤ O(ϵ/α), γ-FRT with δR ≤ O(ϵ/γ),
Ah-Lipschitz continuous and Bh-integral Lipschitz continuous.

▶ The difference bound shows a trade-off between stability and discriminability

Verifications of Stability under Perturbations
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GF2LyNoPel Architecture ϵ = 0.2 0.4
GNN2Ly 7.37%± 1.43% 7.71%± 3.96%
GF2Ly 13.76%± 6.82% 13.54%± 7.16%
Architecture ϵ = 0.6 0.8
GNN2Ly 8.04%± 2.83% 11.01%± 6.33%
GF2Ly 14.76%± 5.67% 16.04%± 6.34%
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Large-scale Wireless Power Allocation

▶ We test the trained GNN in other ad-hoc networks of fixed size and density
⇒ The GNN remains optimal across permutations of ad-hoc networks

Ad-hoc network with 25 pairs Ad-hoc network with 50 pairs

▶ We test in other networks of increasing size and fixed density
⇒ The GNN transfers to larger ad-hoc networks with no need of retraining

Ad-hoc network with 25 pairs
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Tangent Bundle Neural Networks

▶ MNNs process scalar signals over the manifold w/o covering vector fields
▶ We define Tangent Bundle convolution with the Connection Laplacian ∆

▶ The tangent bundle filter with impulse response h̃ : R+ → R is given by

G(x) =
∫ ∞

0
h̃(t)et∆F(x)dt = h(∆)F(x).

▶ Connection Laplacian has spectral decomposition ∆F = −
∞∑

i=1

λi⟨F ,ϕi⟩ϕi

▶ Tangent bundle Fourier Transform is the projections ⇒
[
F
]

i
= ⟨F ,ϕi⟩

▶ Frequency response of filter h is ⇒ĥ(λ) =
∫ ∞

0
h̃(t)e−tλdt

Theorem (Tangent bundle Filters in the Spectral Domain)

Tangent bundle filters are pointwise in the spectral domain
[
G
]

i = h(λi)
[
F
]

i

Visualization of Earth wind field
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