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Filtering in Non-Euclidean Domains

▶ Applications involving geometric data have gained increasing attention
⇒ E.g., wireless communication networks, point clouds for 3D models

Ad-hoc network
Point clouds

▶ Graph convolutional filtering and manifold convolutional filtering have
become the prominent choices for non-Euclidean signal processing

▶ Convolutional filtering provides the fundamental block for constructing deep
learning architectures which helps establish geometric deep learning

Graphs (Sampled Manifolds) can approximate Manifolds

Fact Graphs with well-defined limits can be sampled from a manifold

▶ We relate manifold convolutional filters with graph convolutional filters

Our Contributions

▶ Construct convolutional filters on graphs sampled from the manifold

▶ Derive difference bounds between the graph Laplacian and
Laplace-Beltrami operator from the operator and spectral aspects

▶ Show graph filtering converges to the manifold filtering with n−1/(2d+8)

▶ Carry out experiments with navigation control and point cloud classification

Graph Signal Processing - Graph Filters

▶ Graph G with matrix S – graph shift operator – and graph signal x ∈ Rn

▶ Graph convolutional filter is defined as a summation of iterative graph shifts

y = hG(S)x =
K−1∑
k=0

hkSkx – filter with coefficients hk

S S S

+ + + +
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y = hG(S)x

h0S0x h1S1x h2S2x h3S3x

▶ The symmetric matrix S admits the eigenvector decomposition S = VΛVH

Spectral Representation of Graph Filters

Consider graph signal x and the filtered signal y =
K−1∑
k=0

hkSkx. The Graph

Fourier Transforms (GFTs) x̃ = VHx and ỹ = VHy are related by

ỹ =
K−1∑
k=0

hkΛ
k x̃ = ĥ(Λ)x̃ ⇒ ỹi =

K−1∑
k=0

hkλ
k
i x̃i = ĥ(λi)x̃i

▶ The graph filter frequency response is point-wise – ĥ(λ) =
K−1∑
k=0

hkλ
k

Manifold Signal Processing – Manifold Filters

▶ d-dimensional manifold M ⊂ RN support manifold signals – f ∈ L2(M)

▶ Laplace-Beltrami (LB) operator – intrinsic gradient and divergence

Lf = −div(∇f )
▶ Manifold convolutional filter is the integration of the heat diffusion dynamics

g(x) = (hf )(x) =
∫ ∞

0
h̃(t)e−tLf (x)dt = h(L)f (x)

▶ L is self-adjoint and positive semi-definite – a discrete spectrum {λi ,ϕi}i∈N+

Spectral Representation of Manifold Filters

Consider manifold filter with impulse response h̃(t), manifold signal f (x) and

the filtered signal g(x) =
∫∞

0 h̃(t)e−tLdt f (x). The frequency components when

projecting on the eigenfunctions [f̂ ]i = ⟨f ,ϕi⟩L2(M) and [ĝ]i = ⟨g,ϕi⟩L2(M) are

related by

[ĝ]i =
∫ ∞

0
h̃(t)e−tλidt [f̂ ]i = ĥ(λi)[f̂ ]i ⇒ g =

∞∑
i=1

ĥ(λi)[f̂ ]iϕi

▶ The manifold filter frequency response is point-wise – ĥ(λ) =
∫∞

0 h̃(t)e−tλdt

Sampled Manifolds as Graphs

▶ Graphs on sampled points with geometric structure – sampled manifold

⇒ X = {x1, x2, . . . , xn} are n discrete points sampled uniformly from M

⇒ The weight value connecting points xi and xj is set as a Gaussian kernel

wij =
1
n

1
ϵ(4πϵ)d/2 exp

(
−
∥xi − xj∥2

4ϵ

)

⇒ Adjacency matrix [An]ij = wij ⇒ Laplacian matrix Lϵ
n = diag(An1)− An

Filtering on Sampled Manifolds

▶ Graph signal is a sampled manifold signal with a sampling operator Pn

f = Pnf with [f]i = f (xi), xi ∈ X ,

▶ Manifold filter can operate on the graph Laplacian in continuous time

g =

∫ ∞

0
h̃(t)e−tLϵ

nfdt = h(Lϵ
n)f, g, f ∈ Rn.

▶ The frequency representation with the spectrum of Lϵ
n – {λϵ

i ,n,ϕ
ϵ
i ,n}n

i=1

g =
n∑

i=1

ĥ(λϵ
i ,n)⟨f,ϕϵ

i ,n⟩L2(Gn)ϕ
ϵ
i ,n

Graph Laplacian spectrum approximation of the LB operator

Proposition (Difference of Laplacian operators)

Let M ⊂ RN be equipped with LB operator L whose spectrum is given by

{λi ,ϕi}∞i=1, and assume ϕi ∈ C(M). Let Gn be the discrete graph sampled

u.i.d. from M, with edge weights set with ϵ = ϵ(n) > n−1/(d+4) and graph

Laplacian Lϵ
n. It holds with probability at least 1 − δ that

|Lϵ
nϕi(x)− Lϕi(x)| ≤

(
C1

√
ln(1/δ)

2n
+ C2

√
ϵ

)
λi

d+2
4

Graph Laplacian approximation of the LB operator

Proposition (Difference of Spectrum)

Let M ⊂ RN be equipped with LB operator L whose spectrum is given by

{λi ,ϕi}∞i=1. Let Gn be the discrete graph sampled u.i.d. from M, with edge

weights set with ϵ = ϵ(n) > n−1/(d+4) and graph Laplacian Lϵ
n with spectrum

{λϵ
i ,n,ϕ

ϵ
i ,n}n

i=1. Fix K ∈ N and assume ϵ = ϵ(n) > n−1/(d+4). Then, with proba-

bility at least 1 − 2e−n, we have

|λϵ
i ,n − λi| ≤ Ω1

√
ϵ, ∥aiϕ

ϵ
i ,n − ϕi∥ ≤ Ω2

√
ϵ

with ai = {−1,1} for all i < K .

Frequency Dependent Filters

Definition (α-separated spectrum)
The α-separated spectrum of a LB operator L is defined as the partition

Λ1(α) ∪ . . . ∪ ΛN(α) such that all λi ∈ Λk(α) and λj ∈ Λl(α), k ̸= l , satisfy

|λi − λj| > α.

Definition (α-FDT filter)
The frequency response of α-frequency Difference threshold (α-FDT) filter

h(L) satisfies

|ĥ(λi)− ĥ(λj)| ≤ δk , for all λi , λj ∈ Λk(α)

with δk ≤ δ for k = 1,2 . . . ,n.

Convergence of Graph Filtering

Theorem (Convergence of Graph Filtering)

Let Gn be a discrete graph sampled from manifold M. Let h(·) be the con-

volutional filter parameterized by the discrete graph Laplacian operator Lϵ
n or

the LB operator L. If it holds that

(H1) Weight values in Gn are set with ϵ = ϵ(n) ≥ n−1/(d+4)

(H2) Frequency response of h is Ah Lipschitz continuous and non-amplifying

(H3) Filter h is α-FDT with α2 ≫ ϵ and δ = Ω′
2
√
ϵ/α, then the following holds

in probability at least 1 − 2n−2

∥h(Lϵ
n)Pnf − Pnh(L)f∥L2(Gn) ≤

(
NΩ′

2
α

+ AhΩ1

)√
ϵ + Cgc

√
log n

n

▶ Observe the trade-off between the approximation and discriminability

▶ Transferability can be derived based on this non-asymptotic error bound

Navigation Control

▶ We evaluate the graph filtering approximation with navigation control
Cervino, J. et al, Learning globally smooth functions on manifold, arXiv:2210.00301, 2022

▶ We predict the potential direction leading to the goal point based on
generated trajectories
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Experiments on graphs n = 413 Experiments on graphs n = 1117

Navigation Control Convergence and Transferability Results

▶ We train the graph filters on small graphs and plot the output differences

▶ We verify the transferability by testing the trained graph filters on n = 1225
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1Ly Graph Filter
2Ly Graph Filter 1Ly GF 2Ly GF

n = 435 0.74 0.74
n = 630 0.79 0.8
n = 780 0.81 0.8
n = 1225 0.82 0.83

Table: Successful rates

Pointcloud Model Classification Result

▶ We evaluate the graph filtering approximation with ModelNet10 classification
Wu, Z. et al,3d shapenets: A deep representation for volumetric shapes,IEEE CVPR 2015

▶ Plot the graph output differences between trained graphs and a large graph
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1Ly Graph Filter

2Ly Graph Filter

▶ Graph filters can converge to manifold filters as more points are sampled

Pointcloud Model Classification Transferability Result

▶ We verify the transferability by testing the trained graph filters on n = 1000

1Ly Graph Filter 2Ly Graph Filter
n = 300 21.15%± 3.48% 19.25%± 3.47%
n = 500 18.09%± 6.28% 17.80%± 7.52%
n = 700 17.31%± 6.59% 14.16%± 5.93%
n = 900 15.58%± 4.54% 12.21%± 5.74%
Table: Error rates testing on n = 1000

▶ Transferability allows trained graph filters directly applied to a large graph
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